
Friday October 18 Lecture Notes

1 Some Observations About the Transcendence
Degree

Let R be a an F -algebra and a domain and suppose trdeg R <∞.

(1) Let us consider K, the filed of fractions of R. Any element of K is algebraic
over R because r/s is a root of sλ− r. So trdeg R = trdeg K.

(2) Suppose A is a nonzero proper ideal of R. Then every nonzero a ∈ A is
transcendental over F because if it were not, then f0 = −(

∑n
i=0 fia

i−1)a ∈ A,
with fi ∈ F and f0 6= 0. But F is a field, so f0 is invertible, and so A = R, a
contradiction.

(3) Suppose A is nonzero proper ideal of R and let R/A be an integral do-
main. Then every algebraically dependence in R is still a dependence in R/A.
So trdeg R/A ≤ trdeg R. But we can choose a nonzero a ∈ A, with a tran-
scendental by (2). So it can be extended to a transcendental base, and hence
trdeg R/A < trdeg R.

2 Noether’s Normalization

Theorem (Noether) Let R = F [a1, . . . , an] be an affine algebra and suppose
trdeg R = d. Then there exists b1, . . . , bn ∈ R such that R = F [b1, . . . , bn] and
R is integral over F [b1, . . . , bn].

Proof Permute ai as necessary so that a1, . . . , ad are algebraically independent.
We proceed by induction on n. The case n = 0 is trivial (consider n = d), so
take n > 0.

Step 1. We want to construct R1 = F [c1, . . . , cn−1] such that R is integral
over R, and R = R1[an]. Since n ≥ d, there exists f ∈ F [λ1, . . . , λn] with
f(a1, . . . , an) = 0 where an appears nontrivially. Let ci = ai − arn, with 1 ≤ i ≤
n − 1 and r > deg f . Then f(c1 + arn, . . . , cn−1 + ar

n−1

n ) = 0, and the leading

term in f(c1 + arn, . . . , cn−1 + ar
n−1

n ) involves on an (by construction). Also,
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there is not cancellation. So an is integral over R1 = F [c1, . . . , cn−1] and hence

are the other ai as ai = ci + ar
i

n . Thus R is integral over R and R = R1[an].

Step 2. We see that trdeg R1 = d and so, by induction, R1 = F [b1, . . . .bn−1] is
integral over F [b1, . . . , bd]. Therefore, by the transitivity of integral extensions,
R is integral over F [b1, . . . , bd], and R = R1[an] = F [b1, . . . , bn−1, an]. Now take
an = bn, and we are done.

3 Maximal Ideals and Prime Ideals

Lemma Let P be a maximal ideal of F [λ1, . . . , λn]. Then P contains a nonzero
irreducible polynomial in F [λn].

Proof Consider P∩F [λn]. Then F [λn]/P∩F [λn] can be viewed as subalgebra of
F [λ1, . . . , λn]/P . But P is maximal, so F [λ1, . . . , λn]/P is a field and F [λn]/P ∩
F [λn] is a field, so P ∩F [λn] is maximal. Finally, maximal ideals in F [λn] must
contain a nonzero irreducible polynomial.

Proposition Let R = F [λ1, . . . , λn]. Then
(1) Every ideal of the form L =< λ1−a1, . . . , λn−an >, for some a1, . . . , an ∈ F ,
is maximal.
(2) If F is algebraically closed, then every maximal ideal of R is of that form.

Proof (1) We have ψ : R → F with λi → ai and kerψ = L. So R/L ∼= F ,
but F is field, which means L is maximal. (2) Let F be algebraically closed
and let P be a maximal ideal of F . By the Lemma, P contains an irreducible
polynomial in F [λn]. But F is algebraically closed, so the only irreducible
polynomials are linear polynomials λn − an ∈ P , say. Let R1 = R/ < λn −
an >= F [λ1, . . . , λn−1]. Let P1 = P/ < λn − an >. Since P1 is maximal
ideal of R1, so, by induction, P1 =< λ1 − a1, . . . , λn−1 − an−1 > and so P =<
λ1 − a1, . . . , λn − an >.

Definition Let R be a commutative ring. An ideal P of R is prime if R/P is
an integral domain.

e.g. Every maximal ideal is prime.

e.g. O is prime if and only if R is an integral domain.

Notation: If I1, . . . , Ik are ideals of R, then I1 · · · Ik = {
∑

finite ai1 , . . . , aik , aij ∈
Ij}. This is an ideal of R.

Lemma Let R be commutative, and let P be an ideal of R. Then the following
are equivalent

(i) P is a prime ideal of R.
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(ii) If a, b ∈ P , then a ∈ P or b ∈ P .
(iii) R \ P is closed under multiplication.
(iv) If A and B are ideals of R with AB ⊆ P , then A ⊆ P or B ⊆ P .
(v) If A and B are ideals of R with P ⊂ A and P ⊂ B, then AB 6⊆ P .

Proof
(iv) ⇐⇒ (v) Observe that (v) is the contraposition of (iv).

(i) =⇒ (ii) Suppose not. If a, b ∈ P , with a, b 6∈ P , then a + P, b + P 6= 0 in
R/P . But ab+ P = 0 in R/P , a contradiction.

(ii) ⇐⇒ (iii) Note that (ii) ⇐⇒ [∼ (a ∈ P ∨ b ∈ P ) =⇒∼ (ab ∈ P )] ⇐⇒ [a 6∈
P ∧ b 6∈ P =⇒ ab 6∈ P ]⇐⇒ [a ∈ R \ P ∧ b ∈ R \ P =⇒ ab ∈ R \ P ].

(ii) =⇒ (v) Suppose A,B ⊆ P with A,B 6⊆ P . Take a, b ∈ A and a, b ∈ P . But
ab ∈ AB ⊆ P , a contradiction.

(v) =⇒ (ii) Take a, b ∈ P with a, b /∈ P . Let A =< a > and let B =< b >.
Then AB =< ab >, and so AB ⊆ P , but A,B 6⊆ P , a contradiction.

4 Krull Dimension

Definition Let R be commutative. The prime spectrum of R, spec R, is the
set of prime ideals of R.

Definition A chain in spec R is an ascending chain P0 ⊂ · · · ⊂ Pt of length t.
A prime P has height t if there is a chain of length t in spec R with P as the
largest element, but no such chain of length t+ 1.

Note: Let I be an ideal of R, then by the 2nd Isomorphism Theorem, there is a
set bijection {Ideals of R/I} ↔ {Ideals of R containing I} and (R/I)/(A/I) ∼=
R/A, where A is an ideal of R containing I. So A/I is maximal if and only if A
is maximal because (R/I)/(A/I) ∼= R/A, and A/I is prime if and only if A is
prime. This means we have the equivalent set bijection at the level of maximal
ideals and of prime ideals. In particular, spec R/I is naturally contained in
spec R.

Definition If R is commutative, then Krull dimension of R, Kdim R, if it
exists, is the maximal height of any prime ideal of R.
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