Friday October 18 Lecture Notes

1 Some Observations About the Transcendence Degree

Let R be a an F-algebra and a domain and suppose $\operatorname{trdeg} R<\infty$.
(1) Let us consider K, the filed of fractions of R. Any element of K is algebraic over R because r / s is a root of $s \lambda-r$. So $\operatorname{trdeg} R=\operatorname{trdeg} K$.
(2) Suppose A is a nonzero proper ideal of R. Then every nonzero $a \in A$ is transcendental over F because if it were not, then $f_{0}=-\left(\sum_{i=0}^{n} f_{i} a^{i-1}\right) a \in A$, with $f_{i} \in F$ and $f_{0} \neq 0$. But F is a field, so f_{0} is invertible, and so $A=R$, a contradiction.
(3) Suppose A is nonzero proper ideal of R and let R / A be an integral domain. Then every algebraically dependence in R is still a dependence in R / A. So $\operatorname{trdeg} R / A \leq \operatorname{trdeg} R$. But we can choose a nonzero $a \in A$, with a transcendental by (2). So it can be extended to a transcendental base, and hence $\operatorname{trdeg} R / A<\operatorname{trdeg} R$.

2 Noether's Normalization

Theorem (Noether) Let $R=F\left[a_{1}, \ldots, a_{n}\right]$ be an affine algebra and suppose $\operatorname{trdeg} R=d$. Then there exists $b_{1}, \ldots, b_{n} \in R$ such that $R=F\left[b_{1}, \ldots, b_{n}\right]$ and R is integral over $F\left[b_{1}, \ldots, b_{n}\right]$.

Proof Permute a_{i} as necessary so that a_{1}, \ldots, a_{d} are algebraically independent. We proceed by induction on n. The case $n=0$ is trivial (consider $n=d$), so take $n>0$.

Step 1. We want to construct $R_{1}=F\left[c_{1}, \ldots, c_{n-1}\right]$ such that R is integral over R, and $R=R_{1}\left[a_{n}\right]$. Since $n \geq d$, there exists $f \in F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ with $f\left(a_{1}, \ldots, a_{n}\right)=0$ where a_{n} appears nontrivially. Let $c_{i}=a_{i}-a_{n}^{r}$, with $1 \leq i \leq$ $n-1$ and $r>\operatorname{deg} f$. Then $f\left(c_{1}+a_{n}^{r}, \ldots, c_{n-1}+a_{n}^{r^{n-1}}\right)=0$, and the leading term in $f\left(c_{1}+a_{n}^{r}, \ldots, c_{n-1}+a_{n}^{r^{n-1}}\right)$ involves on a_{n} (by construction). Also,
there is not cancellation. So a_{n} is integral over $R_{1}=F\left[c_{1}, \ldots, c_{n-1}\right]$ and hence are the other a_{i} as $a_{i}=c_{i}+a_{n}^{r^{i}}$. Thus R is integral over R and $R=R_{1}\left[a_{n}\right]$.

Step 2. We see that trdeg $R_{1}=d$ and so, by induction, $R_{1}=F\left[b_{1}, \ldots . b_{n-1}\right]$ is integral over $F\left[b_{1}, \ldots, b_{d}\right]$. Therefore, by the transitivity of integral extensions, R is integral over $F\left[b_{1}, \ldots, b_{d}\right]$, and $R=R_{1}\left[a_{n}\right]=F\left[b_{1}, \ldots, b_{n-1}, a_{n}\right]$. Now take $a_{n}=b_{n}$, and we are done.

3 Maximal Ideals and Prime Ideals

Lemma Let P be a maximal ideal of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Then P contains a nonzero irreducible polynomial in $F\left[\lambda_{n}\right]$.

Proof Consider $P \cap F\left[\lambda_{n}\right]$. Then $F\left[\lambda_{n}\right] / P \cap F\left[\lambda_{n}\right]$ can be viewed as subalgebra of $F\left[\lambda_{1}, \ldots, \lambda_{n}\right] / P$. But P is maximal, so $F\left[\lambda_{1}, \ldots, \lambda_{n}\right] / P$ is a field and $F\left[\lambda_{n}\right] / P \cap$ $F\left[\lambda_{n}\right]$ is a field, so $P \cap F\left[\lambda_{n}\right]$ is maximal. Finally, maximal ideals in $F\left[\lambda_{n}\right]$ must contain a nonzero irreducible polynomial.

Proposition Let $R=F\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. Then
(1) Every ideal of the form $L=<\lambda_{1}-a_{1}, \ldots, \lambda_{n}-a_{n}>$, for some $a_{1}, \ldots, a_{n} \in F$, is maximal.
(2) If F is algebraically closed, then every maximal ideal of R is of that form.

Proof (1) We have $\psi: R \rightarrow F$ with $\lambda_{i} \rightarrow a_{i}$ and ker $\psi=L$. So $R / L \cong F$, but F is field, which means L is maximal. (2) Let F be algebraically closed and let P be a maximal ideal of F. By the Lemma, P contains an irreducible polynomial in $F\left[\lambda_{n}\right]$. But F is algebraically closed, so the only irreducible polynomials are linear polynomials $\lambda_{n}-a_{n} \in P$, say. Let $R_{1}=R /<\lambda_{n}-$ $a_{n}>=F\left[\lambda_{1}, \ldots, \lambda_{n-1}\right]$. Let $P_{1}=P /<\lambda_{n}-a_{n}>$. Since P_{1} is maximal ideal of R_{1}, so, by induction, $P_{1}=<\lambda_{1}-a_{1}, \ldots, \lambda_{n-1}-a_{n-1}>$ and so $P=<$ $\lambda_{1}-a_{1}, \ldots, \lambda_{n}-a_{n}>$.

Definition Let R be a commutative ring. An ideal P of R is prime if R / P is an integral domain.
e.g. Every maximal ideal is prime.
e.g. O is prime if and only if R is an integral domain.

Notation: If I_{1}, \ldots, I_{k} are ideals of R, then $I_{1} \cdots I_{k}=\left\{\sum_{\text {finite }} a_{i_{1}}, \ldots, a_{i_{k}}, a_{i_{j}} \in\right.$ $\left.I_{j}\right\}$. This is an ideal of R.

Lemma Let R be commutative, and let P be an ideal of R. Then the following are equivalent
(i) P is a prime ideal of R.
(ii) If $a, b \in P$, then $a \in P$ or $b \in P$.
(iii) $R \backslash P$ is closed under multiplication.
(iv) If A and B are ideals of R with $A B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$.
(v) If A and B are ideals of R with $P \subset A$ and $P \subset B$, then $A B \nsubseteq P$.

Proof

(iv) \Longleftrightarrow (v) Observe that (v) is the contraposition of (iv).
(i) \Longrightarrow (ii) Suppose not. If $a, b \in P$, with $a, b \notin P$, then $a+P, b+P \neq 0$ in R / P. But $a b+P=0$ in R / P, a contradiction.
(ii) \Longleftrightarrow (iii) Note that (ii) $\Longleftrightarrow[\sim(a \in P \vee b \in P) \Longrightarrow \sim(a b \in P)] \Longleftrightarrow[a \notin$ $P \wedge b \notin P \Longrightarrow a b \notin P] \Longleftrightarrow[a \in R \backslash P \wedge b \in R \backslash P \Longrightarrow a b \in R \backslash P]$.
(ii) $\Longrightarrow($ v) Suppose $A, B \subseteq P$ with $A, B \nsubseteq P$. Take $a, b \in A$ and $a, b \in P$. But $a b \in A B \subseteq P$, a contradiction.
(v) \Longrightarrow (ii) Take $a, b \in P$ with $a, b \notin P$. Let $A=<a>$ and let $B=$. Then $A B=<a b>$, and so $A B \subseteq P$, but $A, B \nsubseteq P$, a contradiction.

4 Krull Dimension

Definition Let R be commutative. The prime spectrum of R, spec R, is the set of prime ideals of R.

Definition A chain in spec R is an ascending chain $P_{0} \subset \cdots \subset P_{t}$ of length t. A prime P has height t if there is a chain of length t in $\operatorname{spec} R$ with P as the largest element, but no such chain of length $t+1$.

Note: Let I be an ideal of R, then by the 2 nd Isomorphism Theorem, there is a set bijection $\{$ Ideals of $R / I\} \leftrightarrow\{$ Ideals of R containing $I\}$ and $(R / I) /(A / I) \cong$ R / A, where A is an ideal of R containing I. So A / I is maximal if and only if A is maximal because $(R / I) /(A / I) \cong R / A$, and A / I is prime if and only if A is prime. This means we have the equivalent set bijection at the level of maximal ideals and of prime ideals. In particular, spec R / I is naturally contained in spec R.

Definition If R is commutative, then Krull dimension of $R, K \operatorname{dim} R$, if it exists, is the maximal height of any prime ideal of R.

Version: 1.0

